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Abstract—The scattering of a time-harmonic antiplane shear wave by two parallel and coplanar Griffith
cracks embedded in an infinite elastic medium is considered. The input wave normally impinges on the
cracks. Fourier transformations are utilized to reduce the problem to two simultaneous integral equations
which can be solved by the series expansion method. The dynamic stress intensity factors are numerically
computed.

1. INTRODUCTION

From an engineering viewpoint, there are two reasons why dynamic crack problems are of
interest. One of them is that the dynamic stress intensity factors may be about 30% higher than
the corresponding static ones[1, 2). Another reason is that the dynamic fracture toughness value
is considerably lower than the static fracture toughness value[3}. As regards the dynamic crack
problem, research has been restricted to the case of a single crack because of the severe
mathematical complexity encountered in finding solutions for two or more cracks. However,
recently, Jain and Kanwal have overcome this difficulty and have presented their solution for
the diffraction problem for normally incident longitudinal and antiplane shear waves by two
symmetrical coplanar Griffith cracks located in an infinite isotropic and homogeneous elastic
medium[4]. They reduced the problem to the solution of an integro-differential equation and
expanded it in a power series of the wave number which is assumed to be small. The integral
equations were solved in a manner similar to that employed by Lowengrub and Srivastav to
solve the corresponding static problem[5]. Jain and Kanwal’s solutions are approximate ones
which are valid at the low-frequency end, hence, the maximum values of the stress intensity
factors were not verified. A similar problem related to the P wave has been worked over using
a different approach[é)].

Recently, the author noticed that there might be a mistake in the numerical results of the
stress intensity factors for an incident SH wave given by Jain and Kanwal[4], because the
following tendency cannot be observed; namely, at the low-frequency end of the frequency
scale, the stress intensity factor generally increases as the wave number increases{1,2].

In this paper, the stresses in an infinite elastic plate weakened by two coplanar Griffith
cracks are determined for a normally incident horizontally polarized shear wave. The analysis is
time-harmonic, so the wavefront effects do not appear. The boundary condition equation for
the problem is reduced to dual integral equations by means of the Fourier transformations. In
an effort to solve the equations, the author, utilizing the work carried out in his previous
paper [6], expands the surface displacement in a series of a function which is automatically zero
outside of the cracks. By doing this, the integral equations can be easily solved by the Schmidt
method. The key to the solution is quite simple, however, thc quality of the solution is
equivalent to those given by Sih ef al.[1,2]. Numerical calculations are carried out for the
dynamic stress intensity factors.

2. FUNDAMENTAL EQUATIONS
We consider the cracks to be placed along the x;,-axis from —b to —a and a to b with
reference to a set of a rectangular coordinates x;, x; and x; as shown in Fig. 1. The x;-axis is
directed parallel to the crack’s edges such that the only nonvanishing displacement is the x,
direction component, u% = u}(x,, x,, 1). In the absence of body forces, the equation of motion is
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X2

Fig. 1. Geometry and coordinate system.

given assuming the medium to be homogeneous and isotropic,
udi+utyn=1/c?- a*utlar?, (H
where ¢, = (u/p)'? is the shear wave velocity, u is the shear modulus, p is the density of the

material, ¢ is time and the indices following a comma indicate the partial differentiation with

respect to the variable, e.g. u¥; = du$/ax;. The nonvanishing stress components are expressed
as

h = puiy,
2
8= uul; @
Assuming the solution of eqn (1) exhibits harmonic time-dependence, we may write
u% = usexp (—iwt), (3)
where w is the circular frequency. Substituting eqn (3) into (1) we obtain
sy + iy + @’u; =0, “)
with
a=wlc,. (5)

The incident antiplane displacement wave which impinges on the line cracks at right angle to
the x;-axis can be expressed as

w9 = ggexp {~ilax, + wt)}, (6)

where ¢, is the amplitude. Thus, we obtain the nonvanishing component of the incident stress
fields, dropping the time factor exp (—iwt)

4 = irg exp (—iaxy), )
with
To = ~QAUUEg (8)

The boundary conditions for the scattered field are

u(x,0)=0, for |x|>b, |x|<a, (9a)

$9(x;,0) = —ir,, for a<|x|<b. (9b)
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3. ANALYSIS

The antiplane character of the displacement field requires u;*’ to be odd in x, and the
scattered field may be represented as

uy* = sgn (Xz)% J: A(£) exp (—y|xa)) cos (&x;) dé, 10
where
sgn{x) =-1, for x,<9,
sgn{xy) =0, for x,=0,
sgn(xy)=1, for x;>0, (th
and
y=(£~a)"=-i(a®~ &' (12

Because of the symmetry conditions in eqn (9), it is possible to consider the problem for the
half-plane, x, =0, only. Substituting eqn (10) into the stress expressions, we obtain

=2 [" eA) exp (~y2) sin (eri e
=2 [" (@) exp (- cos (ex dg. 1y
We take the following series as the surface displacement u;)(x;,0),

U9(x,,0) =22 i q,.[[-l- cos (nm/2) sin [n sin™" {(a + b - 2|x,)/(b - a)}]
K on=t 2n

-4 sin (nwf2) cos [n sin™! {{a + b — 2x,))/(b - a)}]ﬂ,

2n
for a<x|<b,
=, for 0six|<a, (14
b<|x|<=.

Integral expression of eqn (14) is,

w0,0 =25 g, ["Jsinfa+ 0)g2- a6 - g cos Gryde, (1)

where g, are the unknown coefficients to be determined and J,() are Bessel functions. Then,
the unknown function A(¢) is obtained so as to satisfy the boundary condition (9a)

A() = (rom)l(2p) 5‘,‘ Qa%, sin {{a + b)¢2 ~ nml2}J{(b — a)&/2}. (16)
The remaining boundary condition (9b) can be reduced to

,,2.‘ Gn U: (=y)€sin{(a + b)&2 — nw/2}J,{(b ~ a)§l2} cos (£x,) d§] =~-i, for a<|x|<b.
an

To evaluate numerically the semi-infinite integrals in eqn (17), we must replace the integrand so
as to achieve rapid decay when £ becomes large. For this purpose, the following relationship is
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used,
f cos (a1€)J,(ayf) d¢ = cos (ne)\(a? - a D). for a,>a,>0,
0
= —a," sin (naf)/{V(a} - a)a, + V(a2 - a)"}.
f sin (a;8)J,(ax€) d¢ = sin (ne)/V(at - a?), for a,>a, >0,
0

= a," cos (nmf){V(a? - a)a, + Vi - a)'}. for a,>a;>0.
(18)

with

€= Siﬂ—l (a,/az). (19)

Therefore, the integral can be rewritten as
fo ” (=) € sin{(a + b)¢/2— nnf2}J,{(b — a)&2} cos (&x,) d¢
- [e- el L cos (raidisin (a-+ b+ 20082} + sinta + b~ 22
L sin (nmiDeos {(a + b~ 2602} + cos (a + b+ 25012 |
X J,{(b - a)8/2) d€ - 5{(b — )2V Ml(a+ b + 22)/2 - {(b ~ a)/2F)"

x[ta+b+2x)[2+ [{(a + b +2x)[2} = {(b - a)I2F1"'] +% sinfn{m/2 - sin™’

x{(a+b-2x)I(b~ V(b ~ a)2P —{(a+b-2x)21"?, for a<x,<b.
20)

The function (¢ - y)/£ behaves as £72 for large £, so that the semi-infinite integral on the r.h.s.
of eqn (20) can easily be evaluated numerically by Filon's method[7].
Equation (17) can be solved for coefficients g, by the Schmidt method[8].

4. STRESS INTENSITY FACTORS

As coefficients g, are known the entire stress field can be given. However, for the crack
problem, stress ry; just ahead of the crack is important. Stress 7% at x, =0 is given as

8x,, O)f 70 = 2 @ L " (E= g sin{(a+ b)E2 - nl2M, (b - a)&l2) cos (6x,) de

- 2} Gn f: J (b - a)§/2}ﬂ% cos (nmf2){sin{(a + b +2x,)&2} + sin {{a+ b ~ 2x,)&2}]
~% sin (nwlDfcos{{a+b-2x )&} +cosf(a+ b+ 2x,)§f2}]ﬂ d& n

Thus, the stress intensity factors at the inner and outer edges of the crack are defined by the
expressions

xj—a-

K= lim 805, 0V@n(a - x)) = ~nV(x2b - 3 g

Ko= lim 80, OV2r(x, - b) = V(a2 - 0D 3, (-17, (22)

xi—b+
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S. NUMERICAL EXAMPLES AND RESULTS
Adopting the first seven terms of the infinite series in eqn (17), the author used Schmidt’s
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procedures. For an accuracy check, the values of £ g,E,(x,) and —u(x,) are given in Table 1 for
n=1

alb-a)2=025, 1.5 and a/b = 0.5. From this it is clear that the Schmidt method is carried out
satisfactorily. In Table 2, the values of g, are shown for a(b—a)/2=0.5, 1.5 and a/b =0.5.
Table 3 shows the ratios of the peak stress intensity factors |K;| and [K| to the corresponding
static ones, K and K. In Figs. 2 and 3, the absolute values of K, and K; are plotted for

7
Table 1. The values of X'q,.E,,(x.) and —u(x,) for ath - a)f2=05, 1.5and a/b = 0.5

e J
A(b=a)/2 x, /b Eq,i‘.“(x. ) ~u(x,)
0.50000 -0.89454x10® -0.999991
0.53571 0.82738x10°  =1,000001
0.5 0.75000 ~0.17540x10°®  =1,000004 -1.0i
0.96429 0.14835x10°° =1.000001
1.00000 -0,13913x10° =0,999991
050000 ~0,40411%107*  =0.99997i
0453571 0.41440*19“ -1.00000i
1.5 0.75000 —0.57526%10°°  =1,000001 -1.0i
0.96429 0.75486*10™*  =1,000003
1.00000 ~0.72543x107% —0.999961

Table 2. The values of g, for alb—a)/2=0.5, 1.5 and a/b =0.5

a(b-a)/2

o]

a/b = 0.5

05

Y. RC, N SRR |\ R

0.77364x10"
0.49086x1G°
-0,15321x10°
-0.39237x10*
0.78403%x10°
0.23990x16°
0.13181x16°

-0.55954¢10"
-0.81148%10°
+0.9093971G"
-0.40340%10"
-0,48029¢16*
-0,3117600°
-0,95185210°

-

O

1.5

N on B W N

0.50625x16°
0.15487x10"
-0,9062716"
-0,20990%10°
0.30889%10"
0,64345%10*
0.16147216*

~0.30469%10
~0.98477%46"
+0,17448%16"
+0.73394x16°
-0,21945%10°
-0.87807%16°
-0.38845%10*

[ N I

Table 3. The absolute peak values of the dynamic stress intensity factors K; and K,

a/b 0.1 0.2 0.5 0.8 0.9
K™k | 121 | 1.17 | 1.29 | 1.28 | 1.28
IKJ’../K,’ 1.4 1.06 | 1.33 1.29 1.28
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Fig. 2. Absolute value of the stress intensity factor at the outer edge of the crack vs a(b - a)/2.
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Fig. 3. Absolute value of the stress intensity factor at the inner edge of the crack vs a{b - a)f2.

alb =0.1, 0.2, 0.5, 0.9 against the normalized wave number a(b — a)/2. The results of both K,
and K; for a/b = 0.9 agree well with that given by Loeber and Sih for a single crack{1]. It is
considered that Jain and Kanwal made a careless mistake in their numerical calculations of the
stress intensity factors for an incident SH wave[4].

The difference between the present approach to the problem and that used in Ref. [4] is in
the solving of the dual integral equations. Jain and Kanwal’s solutions are effective at the
low-frequency end of the frequency scale, and thereby, the series expansion method employed
here is excellent due to its validity at low and intermediate frequencies.

From the numerical calculations, the author draws the following conclusions:

(i) For the static case, the stress intensity factor at the inner edge of the cracks is always
larger than that of the outer one. However, the peak value of the dynamic stress intensity factor
[Ko| exceeds the other one |K;| for a given value of a/b such as 0.5.

(i) At low frequencies such as a(b —a)/2=0.0~ 1.0, |[K;| increases rapidly as the value of
alb increases slightly for its small value.

(iii) It is considered that the maximum values of the stress intensity factors {K;| and | K| are
at most 35% greater than the corresponding static factors.
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